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Abstract In this paper, we develop a computational model of solute dispersion in saturated porous media by
considering fluid velocity as a fundamental stochastic quantity. The velocity can be considered as having a
random part correlated in space and 6-correlated in time superimposed on the Darcian velocity. The spatial
correlation depends on the geometric and other properties of porous media. The stochastic partial differential
equation that describes the mass conservation of a solute in an infinitesimal volume is derived by assuming
the variables are irreguiar, continuous random variabies which require higher order terms in the Taylor series
to model the spatial variation. This partial differential equation can be written in the form of a stochastic
differential equation with a drift term and a diffusion term. The diffusion term can be expressed in terms of a
Hibert space valued Wiener process which is a function of the spatiai correlation of the random part of
velocity. This spatial correlation is modelled in terms of a covariance function with an exponential kernel
having a fixed correlation length, and Karhunnen-Loeve expansion based on the orthonormal basis functions
for the exponential kernel is used in the solution. A numerical scheme was developed to solve the model
based on the definition of {to integral.

1. INTRODUCTION by changing direction and magnitude in an
unpredictable manner. In this paper, we propose a
model which addresses this fundamental nature of

Computational models can often be used to . . . .
the dispersion phenomena in porous media.

investigate the phenomena it describes through
experimentation with the model. In this paper, we
develop a modet that describes the solute
dispersion in a porous medium saturated with

2. DEVELOPMENT OF A STOCHASTIC

R . MODEL

water considering velocity of the solute as a

stochastic  variable. When we consider the

hydrodynamic dispersion of a solute in flowing Let us consider a l-dimensional problem of a
water 10 a porous mediumn, there are two ways the solute dispersion in a saturated porous medium.
solute gets distributed over the medium. The Consider concentration C(x,f) as a stochastic
solute can mechanically disperse due to fingering variable with , for example, g/m’ as units, V{x.f) is
effects of the granular medium and it can diffuse the velocity (m/h), ¢ is the porosity of the material
due to sclute concentration differences. In and J(x,7) is the contaminant flux at x in g/m>h.
deriving the advection-dispersion equation for As C, V, and T are stochastic functions of space
solute  transport, the dispersive transport is and time having irregular (sometimes highly
modeiled by using a Fickian assumption which irregular) and continuous realisations, it is
gives rise to the hydrodynamic dispersion important to consider higher order terms to the
coefficient (Fetter, 1999). The hydrodynamic Taylor series expansion when formulating the
dispersion coefficient has been found to be mass conservation model for the solute. Consider
dependent on the scale of the experiment. The an mfinitesimal cylindrical object having a cross
hydrodynamic dispersion contributes to making sectional area, A (Figure |).

the velocity of solute particles a random variable
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Figure | An infinitesimal cylindrical object within
the porous medium having the solute
concentration of C(x,7)

Writing the mass bafance for the change in solute
during a small time increment. A,
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For convenience, let us indicate J.(x.0) as J, and
St as S,

From the Taylor series expansion,
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where R(g) is the remainder of the series.

Assuming that the higher order derivatives greater
thitn 3 of the flux are negligible, (1) can be written
as
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Equation (3} describes the mass conservation of
the contaminant within the cyhindrical volume
(AAx).
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Compared to the first term on the right hand side,
fet us assume that £ (x,r)dr = 0. This assumption

has to be tested in any given situation.
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Let us express the I{rs) term in terms of the
velogity in the x direction and the concentration of
the contaminant.
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Now the velocity can be expressed as a stochastic
quantity which is affected by the nature of the
porous medium. The etffects of the porous medium
can be included within the noise term of the
stochastic variable. We model the wvelocity in
termis of the mean velocity and the Gaussian white
noise.

Ve =V(x)+Exn (6)
where:
E_/—(x,t) = —@@ {Darcy’s Law)
@(x) ox

K{xy=  atypical value of the hydraulic

conductivity in the region
@(x)=  the porosity of the material

p=  pressure head

and &£(x,7) is white noise correfated in space and
o-correiated in time such that

Elé(x.n]=0 (N
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¢(x,.x,) is the velocity covariance function in

space und §(r, —1,) is the Dirac delta function.

Substituting (6) into {3),
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Let us define the operator in space,
8= &—Q—wk—a— for a given A,.
2 o dx
Then:
dC = SV (en) Cla)+ Cleny Ext))dt
dC = S(‘r/m{_x,f) C(.x,I))dI.+
(12)

S(CCa ) (ECx 1) dt))

(12) is a stochastic differential equation and both
terms on the right hand side need to be integrated
as Ito integrals to obtain concentration. We
df(ry=E0x,0dr where S0 ks a
Wiener process in Hilbert space for a given x.

introduce

Therefore (12) can be written as:
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dC = ${V (x.0) Clx.0))de + S(Clx.0) dBH) (13

Clen= [ s{Vien clun)de+
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where S is the differential operator given above.

(1989) dpin)
approximated by:

Unny showed that can be

i

dB, ()= 44, db, ) (15)
J=i

where m is the number of terms used, db, (1) is

the increments of standard Wiener processes, f|
and A, are eigen functions and eigen values of

the covariance function of the velocity,
respectively.

2.1. Covariance KEernel For Veloeity

Ghanem and Spanos (1991} describe the

mathematical details of expressing the noise term
of a stochastic variable (e.g. velocity in this case)
as a Karhunnen-Loeve expansion. The ceniral to
this expansicn is the choice of the covariance
function (Covariance Kernel) which models the
spatial correiation of the ‘noise’ term (é’(x,r) in
(6)). We assume an exponential covariance kernel
in this work to illustrate the model development.
The exponential covariance kernel is frequently
used in modelling the correlation of geographical
data.

The exponential covariance kernel can be given
as:
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glx,x)=c'e " (16)

where y = |x, —X,|, & is the correlation length and

o is the variance (Ghanem and Spanos, 1991).
x; and x are any two points within the range [O,a].
The eigen functions () and eigen values (A} of

g(x,,x,) are obtained as the solution to the

following integral equation:
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The solutions to {17) assuming ¢ is a constant

over {(La] are given by:
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COMPUTATIONAL SOLUTION
3.1, Numerical Scheme

The differentinl operator A in (12) can be
expressed as a difference operator using a
backward difference scheme. By dividing the
mterval from 0 to a on x axis into (N-1}
equidistant and small intervals of Ax, and the
interval from 0 to ¢ on the time axis inte (K -1
equidistant and small intervals of Ar, we can write
the derivatives for any variable U at (k,n) point on
the space-time grid (Figure 2)

' The derivation of the solution can be obtained from the
wuthors
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Figure 2 Space-time grid used in the
computational scheme with respect to x.

The first derivative of a variable U can be written
as

oUu Y Ul -uUl
=l T e 2]
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where {/]'indicates the value of U/ at the grid
point, {n,k). The second derivative can be written

as
L l.

The operator S can be written as,
In the difference form
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The first derivative of U with respect to time can
be expressed using a forward difference scheme.

4] "
dr Ar
Applying (23) and (24) to (13) and for the case of
the mean velocity (v) being constant,

(23)
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The difference equation (25} gives the future
value of a stochastic variable in terms of past
vaiues. In addition this possesses the properties of

ito definition of integration with respect to time.

4. ANEXAMPLE

We have solved (19) with ¢ = 1.0m correlation
fength, b = 0.05m (¢ = 20} and obtained 1! roots:
wy = 2.85774; wy = 5.72535; w; = 8.6116; wy
11.2511; s = 14.4562; », = 17.4166; vy
23.4054; wy = 264284, oy = 29.4669; oy,
32,5187 and wy, = 35.5871.

With these roots we have constructed the basis
~ . . - )

functions using (20). With o= 1.0 we have
calculated the eigen values A, to construct the

increments of Wiener processes in the Hilbert
spaces using (15). The standard Wiener process
increments were generated for Ar = 0.0001 days
for a total time of | day (see Kloeden and Platen
(1991)). The value of 50.0 m/day was used for the
hydraulic conductivity and piezometric head
gradient of 0.020 m/m was used to obtain the
mean velocity of 4.0 m/day for a porous medium
having porosity of 0.25. A realisation of the
solution 15 given in Figure 3.

Figure 3 A realisation of the solution of (13)

The siatistical nature of the computational
- b} ny -

selution changes as o~ and # changes. This allows
us to model hydrodynamic dispersion without the
need for a scale dependent diffusion coefficient.
The characterisation of o” and & still needs to be
investigated for different porous media, and much
work is still remaining to be done.

5. SUMMARY AND CONCLUSIONS

We have developed a model for solute transport
in saturaied porous media without using the
dispersion coefficient and Fikian assumption that



leads to the coefficient. We have considered the
variables involved (concentration, velocity, and
flux) as stochastic variables and developed a
numerical scheme to solve the stochastic
differential equation formulated in space and time.
We have shown that it 1s possible to formulate a
model  which  closely reflects the natural
phenomenon that occurs when a solute disperses
in a saturated porous medium.
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Modelling Deep Drainage Under Different Land Use Systems.
1. Verification and Systems Comparison
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Ahbstract Drainage beyond the root zone contributes to water table rise and salinity in some parts of the
Liverpoot Plains catchment in northern NSW. The effect of land use on deep drainage was investigated by
comparing the traditional long fallow system with more intense ‘opportunity cropping’. Long fallowing {two
crops in three years) is ssed to store rainfall in the soil profile but risks substantial deep drainage.
Opportunity cropping seeks 1o lessen this risk by sowing whenever there is sufficient soil moisture. Elements
of the water batance and productivity were measured under various farming systems in a ficld experiment in
the southern part of the Liverpool Plains. The APSIM (Agricultural Production Systems Simuiatory model
was parameterised for the site using soil and water data {soit moisture, runoff, climate), and crop data
(phenology, biomass, leaf area). Model performance was tested against four years of measured data on the
site. Good agreement between model predictions and measurements indicated thas the model captures the
main hydrological and biological processes. The verified model was used in long-term (41 years) simulations
to predict deep drainage under different systems and extrapolate experimental results. The results showed
jarge differences between agricultural systems mostly because differences in evapotranspiration caused
different profile moisture at the time of rain. Opportunity cropping resulted in greater water use, significanily
reduced deep drainage and increased production compared to long fallowing. Modelling also indicated that
continuous sorghum might be & better alternative for reducing deep drainage, than continuous wheat.

whole catchment taking into account soil and
climate variability.

2. METHODS

1. INTRODUCTION

Dryland salinity caused by shallow water tables is
a major concern in the Liverpoo! Plains catchment
in northern NSW. one of the most fertile 2.}. Site Description
agricultural areas in Australia. The catchment has a
total area of 1.2 million ha which is predominantly
under agricultural production. Large areas of the
alluvial plains within the catchment are at risk of
production loss due to high water tables and
salinity [Broughton, 1994]. Deep drainage, which
is the amount of water draining below the root
sone, can potentially become recharge and
contribute to rising water tables and salinity. The
effect of farm scale management strategies on
tong-term deep drainage was investigated using
both field experimentation and modelling. The
APSIM  (Agricultural  Production Systems
Simulator) model was parameterised with data
measured on the experimental site. This paper
deseribes model verification using measured and
simulated results. The verified model was used in
long-term simulations to extrapolate the results of
the water balance and productivity in time 10
examine the capacity of alternative cropping

The experimental site was established in the
foothitls of the Liverpoo! Ranges on the ‘Hudson’
property in 1993 and is typical of the highly
productive farming country in the caichment. The
average annual rainfail is 678 mm, with most
fulling during summer. Average anaual potential
evapotranspiration is 1718 mm. The site s
representative of areas previously identified as
being significant coatributors (o groundwater
recharge. The site is situated across two contour
bays on a slope of approximately 29, The seil is a
Seif-mulching Black Vertoso! [Isbell, 19961, with
a clay content of about 75% of which 90% is
smectite. This gives the soil marked shrink/swell
potential (linzar shrinkage coeflficient of 0.21) and
a4 self-mulching surface. The available moisture
holding capacity of the soil is large (505 mm (o
3 m depth). Groundwater occurs 15 m below the
surface above basalt bedrock.

systems to reduce deep drainage. 1t builds on The expetiments were designed to compare waler
previous studies [eg. Keating et al., 1995] by using balance and production of cropping systems with
more extensively tested and more accurately varying lengths of faliow and perennial pastures.
parameterised modelling tools. A second paper in Only the cropping systems results are discussed
these proceedings [Ringrose-Voase et ab.,, 1999] here. The ‘long fallow’ system of one wheat and
describes how the model can be applied over the one sorghum crop in three years (see Table 1) 1s
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